Adaptive Model for Integrating Different Types of Associated Texts for Automated Annotation of Web Images

نویسندگان

  • Hongtao Xu
  • Xiangdong Zhou
  • Lan Lin
  • Mei Wang
  • Tat-Seng Chua
چکیده

A lot of texts are associated with Web images, such as image file name, ALT texts, surrounding texts etc on the corresponding Web pages. It is well known that the semantics of Web images are well correlated with these associated texts, and thus they can be used to infer the semantics of Web images. However, different types of associated texts may play different roles in deriving the semantics of Web contents. Most previous work either regard the associated texts as a whole, or assign fixed weights to different types of associated texts according to some prior knowledge or heuristics. In this paper, we propose a novel linear basic expansion-based approach to automatically annotate Web images based on their associated texts. In particular, we adaptively model the semantic contributions of different types of associated texts by using a piecewise penalty weighted regression model. We also demonstrate that we can leverage the social tagging data of Web images, such as the Flickr’s Related Tags, to enhance the performance of Web image annotation. Experiments conducted on a real Web image data set demonstrate that our approach can significantly improve the performance of Web image annotation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images

Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...

متن کامل

Scalable Image Annotation by Summarizing Training Samples into Labeled Prototypes

By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...

متن کامل

Face Detection with methods based on color by using Artificial Neural Network

The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...

متن کامل

Web Image Annotation Using an Effective Term Weighting

The number of images on the World Wide Web has been increasing tremendously. Providing search services for images on the web has been an active research area. Web images are often surrounded by different associated texts like ALT text, surrounding text, image filename, html page title etc. Many popular internet search engines make use of these associated texts while indexing images and give hig...

متن کامل

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009